Soal-Soal Matematika/Limit

Dari testwiki
Revisi sejak 9 September 2024 12.56 oleh imported>Akuindo (Aturan L'Hôpital)
(beda) ← Revisi sebelumnya | Revisi terkini (beda) | Revisi selanjutnya → (beda)
Loncat ke navigasi Loncat ke pencarian

Rumus umum

lim\limits h0f(x+h)f(x)h

Sifat limit

lim\limits xpk=klim\limits xpx=plim\limits xpf(x)=f(p)lim\limits xpkf(x)=klim\limits xpf(x)lim\limits xp(f(x)+g(x))=lim\limits xpf(x)+lim\limits xpg(x)lim\limits xp(f(x)g(x))=lim\limits xpf(x)lim\limits xpg(x)lim\limits xp(f(x)g(x))=lim\limits xpf(x)lim\limits xpg(x)lim\limits xp(f(x)/g(x))=lim\limits xpf(x)/lim\limits xpg(x)lim\limits xp(f(x))n=(lim\limits xpf(x))nlim\limits xpf(x)n=lim\limits xpf(x)n

Rumus lainnya

lim\limits x0xsinx=1lim\limits x0xtanx=1lim\limits x0sinxx=1lim\limits x0tanxx=1lim\limits xxsin(1x)=1lim\limits xxtan(1x)=1lim\limits x0axsinbx=ablim\limits x0axtanbx=ablim\limits x0sinaxbx=ablim\limits x0tanaxbx=ablim\limits xpx=0,1<p<1lim\limits xaxm+bpxn+q=ap,m=nlim\limits x0axm+bpxn+q=ap,m=nlim\limits xax2+bx+cpx2+qx+r=bq2a,a=plim\limits xax3+bx2+cx+d3px3+qx2+rx+s3=bq3a23,a=plim\limits x(1+1x)x=elim\limits x0(1+x)1x=elim\limits x(1+ax)bx=eablim\limits x0(1+ax)bx=eablim\limits x0ex1x=1lim\limits x0ax1x=lna

Aturan L'Hôpital

lim\limits xpf(x)g(x)=limxpf(x)g(x)

contoh soal

  1. tentukan nilai limit dari
  • limx3x25x+6x29
  • limxpx2(3+p)x+3px2+(4p)x4p
  • limx9x3x210x+9
  • limx8x210x+16x32
  • limx4(x2)(5x+4)x25x+4
  • limx1(x1)2x232x3+1
  • limx01cosx8x2
  • limxbxsinbbsinxxb
  • limx16x5+12x+34x5+108x3+67x
  • limx9x2+11x+29x2+5x+3
  • limx(n+1n3)3n94
  • limx(n2+4n+10n24n+7)2n28n+1424n+9
  • limx(3n+83n+7)6n5
  • limx5+x2x+20|x5|
  • limx6|x+6|x2+2x24
  • limx4x25x+4x2x12 (aturan L'Hôpital)
Jawab
  • limx3x25x+6x29=limx3(x3)(x2)(x3)(x+3)=limx3x2x+3=323+3=16
  • limxpx2(3+p)x+3px2+(4p)x4p=limxp(x3)(xp)(x+4)(xp)=limxpx3x+4=p3p+4
  • limx9x3x210x+9=limx9(x3)(x+3)(x1)(x9)(x+3)=limx9x9(x1)(x9)(x+3)=limx91(x1)(x+3)=1(91)(9+3)=148
  • limx8x210x+16x32=limx8(x8)(x2)(x23+2x3+4)(x32)(x23+2x3+4)=limx8(x8)(x2)(x23+2x3+4)x8=limx8(x2)(x23+2x3+4)=(82)(823+283+4)=6(4+4+4)=72
  • limx4(x2)(5x+4)x25x+4=limx4(x2)(5x+4)(x4)(x1)=limx4(x2)(5x+4)(x2)(x+2)(x1)=limx45x+4(x+2)(x1)=5(4)+4(4+2)(41)=2
  • limx1(x1)2x232x3+1=limx1(x3313)2x232x3+1=limx1(x3313)2(x31)2=limx1((x31)(x23+x3+1))2(x31)2=limx1(x31)2(x23+x3+1)2(x31)2=limx1(x23+x3+1)2=(123+13+1)2=(1+1+1)2=9
  • limx01cosx8x2=limx02sin2x28x2=2sinx2sinx28xx=281212=116
  • limxbxsinbbsinxxb=limxbxsinbbsinb+bsinbbsinxxb=limxb(xb)sinb+b(sinbsinx)xb=limxb(xb)sinbxb+limxbb(sinbsinx)xb=sinb+blimxbsinbsinxxb=sinb+blimxb2cosb+x2sinbx2xb=sinb+blimxb2cosb+x2sinbx22bx2=sinbblimxbcosb+x2sinbx2bx2=sinbblimxbcosb+x2limxbsinbx2bx2=sinbbcosb1=sinbbcosb
  • limx16x5+12x+34x5+108x3+67x=limxx5(16+12x4+3x5)x5(4+108x2+67x4)=164=4
  • limx9x2+11x+29x2+5x+3=11529=623=1
  • limx(n+1n3)3n94=limx(n3+4n3)3n94=limx(n3n3+4n3)3(n3)4=limx(1+1n34)3(n3)4=(limx(1+1n34)n34)3=e3
  • limx(n2+4n+10n24n+7)2n28n+1424n+21=limx(n2+8n4n+7+3n24n+7)2n28n+1424n+9=limx((n24n+7)+(8n+3)n24n+7)2n28n+1424n+9=limx(n24n+7n24n+7+8n+3n24n+7)2n28n+1424n+9=limx(1+1n24n+78n+3)2(n24n+7)3(8n+3)=(limx(1+1n24n+78n+3)n24n+78n+3)23=e23=e23
  • limx(3n+83n+7)6n5=limx(3n+7+13n+7)6n5=limx(3n+73n+7+13n+7)6n5=limx(1+13n+7)6n5=limx(1+13n+7)(3n+7)(6n5)3n+7=(limx(1+13n+7)3n+7)6n53n+7=(limx(1+13n+7)3n+7)limx6n53n+7=(limx(1+13n+7)3n+7)limxn(65n)n(3+7n)=e63=e2
  • limx5+x2x+20|x5|=limx5+(x5)(x+4)(x5)=limx5+x+4=5+4=9
  • limx6|x+6|x2+2x24=limx6(x+6)(x+6)(x4)=limx61x4=164=110=110
  • limx4x25x+4x2x12=limx42x52x1=2(4)52(4)1=37
  1. tentukan nilai a dan b dari limx5x2+(a+b)x10x2+(a+6)x15b=711!
Jawaban

limx5x2+(a+b)x10x2+(a+6)x15b=711x2+(a+b)x10=0(5)2+(a+b)510=025+5a+5b10=05a+5b=15a+b=3limx52x+(a+b)2x+(a+6)=7112x+(a+b)2x+(a+6)=7112(5)+(a+b)2(5)+(a+6)=71110+(a+b)10+(a+6)=711a+b+10a+16=71111(a+b+10)=7(a+16)11a+11b+110=7a+1124a+11b=2a+b=3a=3b4a+11b=24(3b)+11b=2124b+11b=27b=14b=2a=3ba=32a=5