Soal-Soal Matematika/Fungsi komposisi: Perbedaan antara revisi

Dari testwiki
Loncat ke navigasi Loncat ke pencarian
imported>Akuindo
 
(Tidak ada perbedaan)

Revisi terkini sejak 4 Juni 2023 09.25

Bentuk dan sifat fungsi komposisi

bentuk (f o g) x = f(g (x))

sifat:

  1. (f o g) x ≠ (g o f) x
  2. ((f o g) o h) x = (f o (g o h)) x
  3. (f o I) x = (I o f) x

tambahan sifat-sifat dari fungsi invers.

contoh soal

1. f(x) = 6x-7, g(x) = 8x+1 serta h(x) = 5x-3. tentukan

  • (f o g) x
  • (g o f) x
  • ((f o g) o h) x
  • (f o (g o h)) x
Jawaban

*(fg)x=f(g(x))=6(8x+1)7=48x+67=48x1*(gf)x=g(f(x))=8(6x7)+1=48x56+1=48x55*(fg)x=f(g(x))=6(8x+1)7=48x+67=48x1((fg)h)x=(fg)(h(x))=48(5x3)1=240x1441=240x145*(gh)x=g(h(x))=8(5x3)+1=40x24+1=40x23(f(gh))x=f((gh)(x))=6(40x23)7=240x1387=240x145

2. f(x) = 6x-7, g(x) = 4x2-8x+1. tentukan

  • (f o g) x
  • (g o f) x
Jawaban

*(fg)x=f(g(x))=6(4x28x+1)7=24x248x+67=24x248x1*(gf)x=g(f(x))=4(6x7)28(6x7)+1=4(36x284x+49)48x+56+1=144x2336x+19648x+57=144x2384x+253

3. tentukan g(x) bila f(x) = 6x-7 serta

  • f(g(x)) = 24x2-48x-1!
  • g(f(x)) = 144x2-384x+253!
Jawaban

*f(g(x))=24x248x16(g(x))7=24x248x16(g(x))7+76=24x248x1+76g(x)=4x28x+1*g(f(x))=144x2384x+253g(6x7)=144x2384x+253g(6x7+76)=144(x+76)2384(x+76)+253g(x)=144(x2+14x+49)36(384x+2.688)6+253g(x)=24(x2+14x+49)6(384x+2.688)6+1.5186g(x)=24x2+336x+1.176384x2.688+1.5186g(x)=24x248x+66g(x)=4x28x+1

4. tentukan f(x) bila g(x) = 4x2-8x+1 serta

  • f(g(x)) = 24x2-48x-1!
  • g(f(x)) = 144x2-384x+253!
Jawaban

*f(g(x))=24x248x1f(4x28x+1)=24x248x1f(4x28x+1)=24x248x1+77f(4x28x+1)=24x248x+67f(4x28x+1)=6(4x28x+1)7f(x)=6x7*g(f(x))=144x2384x+2534f(x)28f(x)+1=144x2384x+2534f(x)28f(x)+43=144x2384x+2563(2f(x)2)23=(12x16)23(2f(x)2)2=(12x16)22f(x)2=12x162(f(x)1)=2(6x8)f(x)1=6x8f(x)=6x7

5 Diketahui f(x)=2x+1 dan (f ο g)(x-1) = -2x2+4x-1. Tentukan g(-2)!

Jawaban

(fg)(x1)=2x2+4x1f(g(x1))=2x2+4x1misalkang(x1)=af(a)=2x2+4x12a+1=2x2+4x12a=2x2+4x2a=x2+2x1a=(x22x+1)a=(x1)2g(x1)=ag(x1)=(x1)2g(x)=x2g(2)=(2)2g(2)=4

6 Diketahui f(x-4)=2x+1 dan g(x+3) = x2-5x+6. Tentukan (f ο g)-1(9)!

Jawaban

(fg)1(9)=g1(f1(9))f(x4)=2x+1f(x)=2(x+4)+1f(x)=2x+8+1f(x)=2x+9f1(x)=x92g(x+3)=x25x+6g(x)=(x3)25(x3)+6g(x)=x26x+95x+15+6g(x)=x211x+30g(x)=x211x+121414g(x)=(x112)214g1(x)=x+14+112(fg)1(x)=g1(f1(x))g1(f1(x))=x92+14+112g1(f1(9))=992+14+112g1(f1(9))=14+112g1(f1(9))=12+112g1(f1(9))=122g1(f1(9))=6